Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 8(1): e0060120, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36598239

RESUMO

The open ocean is an extremely competitive environment, partially due to the dearth of nutrients. Trichodesmium erythraeum, a marine diazotrophic cyanobacterium, is a keystone species in the ocean due to its ability to fix nitrogen and leak 30 to 50% into the surrounding environment, providing a valuable source of a necessary macronutrient to other species. While there are other diazotrophic cyanobacteria that play an important role in the marine nitrogen cycle, Trichodesmium is unique in its ability to fix both carbon and nitrogen simultaneously during the day without the use of specialized cells called heterocysts to protect nitrogenase from oxygen. Here, we use the advanced modeling framework called multiscale multiobjective systems analysis (MiMoSA) to investigate how Trichodesmium erythraeum can reduce dimolecular nitrogen to ammonium in the presence of oxygen. Our simulations indicate that nitrogenase inhibition is best modeled as Michealis-Menten competitive inhibition and that cells along the filament maintain microaerobia using high flux through Mehler reactions in order to protect nitrogenase from oxygen. We also examined the effect of location on metabolic flux and found that cells at the end of filaments operate in distinctly different metabolic modes than internal cells despite both operating in a photoautotrophic mode. These results give us important insight into how this species is able to operate photosynthesis and nitrogen fixation simultaneously, giving it a distinct advantage over other diazotrophic cyanobacteria because they can harvest light directly to fuel the energy demand of nitrogen fixation. IMPORTANCE Trichodesmium erythraeum is a marine cyanobacterium responsible for approximately half of all biologically fixed nitrogen, making it an integral part of the global nitrogen cycle. Interestingly, unlike other nitrogen-fixing cyanobacteria, Trichodesmium does not use temporal or spatial separation to protect nitrogenase from oxygen poisoning; instead, it operates photosynthesis and nitrogen fixation reactions simultaneously during the day. Unfortunately, the exact mechanism the cells utilize to operate carbon and nitrogen fixation simultaneously is unknown. Here, we use an advanced metabolic modeling framework to investigate and identify the most likely mechanisms Trichodesmium uses to protect nitrogenase from oxygen. The model predicts that cells operate in a microaerobic mode, using both respiratory and Mehler reactions to dramatically reduce intracellular oxygen concentrations.


Assuntos
Cianobactérias , Mimosa , Trichodesmium , Mimosa/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Cianobactérias/metabolismo , Nitrogenase/metabolismo , Oxigênio/metabolismo
2.
Nat Commun ; 13(1): 2490, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513388

RESUMO

The synchronized operation of power generators is the foundation of electric power network stability and a key to the prevention of undesired power outages and blackouts. Here, we derive the conditions that guarantee synchronization in power networks with inherent generator heterogeneity when subjected to small perturbations, and perform a parametric sensitivity analysis to understand synchronization with varied types of generators. As inverter-based resources, which are the primary interfacing technology for many renewable sources of energy, have supplanted synchronous generators in ever growing numbers, the center of attention on associated integration challenges have resided primarily on the role of declining system inertia. Our results instead highlight the critical role of generator damping in achieving a stable state of synchronization. Additionally, we report the feasibility of operating interconnected electric grids with up to 100% power contribution from inverter-based renewable generation technologies. Our study has important implications as it sets the basis for the development of advanced control architectures and grid optimization methods that ensure synchronization and further pave the path towards the decarbonization of the electric power sector.

3.
iScience ; 24(7): 102813, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34337363

RESUMO

The electrochemical reduction of CO2 has emerged as a promising alternative to traditional fossil-based technologies for the synthesis of chemicals. Its industrial implementation could lead to a reduction in the carbon footprint of chemicals and the mitigation of climate change impacts caused by hard-to-decarbonize industrial applications, among other benefits. However, the current low technology readiness levels of such emerging technologies make it hard to predict their performance at industrial scales. During the past few years, researchers have developed diverse techniques to model and assess the electrochemical reduction of CO2 toward its industrial implementation. The aim of this literature review is to provide a comprehensive overview of techno-economic and life cycle assessment methods and pave the way for future assessment approaches. First, we identify which modeling approaches have been conducted to extend analysis to the production scale. Next, we explore the metrics used to evaluate such systems, regarding technical, environmental, and economic aspects. Finally, we assess the challenges and research opportunities for the industrial implementation of CO2 reduction via electrolysis.

4.
Sci Rep ; 9(1): 16948, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740694

RESUMO

In natural environments, cells live in complex communities and experience a high degree of heterogeneity internally and in the environment. Even in 'ideal' laboratory environments, cells can experience a high degree of heterogeneity in their environments. Unfortunately, most of the metabolic modeling approaches that are currently used assume ideal conditions and that each cell is identical, limiting their application to pure cultures in well-mixed vessels. Here we describe our development of Multiscale Multiobjective Systems Analysis (MiMoSA), a metabolic modeling approach that can track individual cells in both space and time, track the diffusion of nutrients and light and the interaction of cells with each other and the environment. As a proof-of concept study, we used MiMoSA to model the growth of Trichodesmium erythraeum, a filamentous diazotrophic cyanobacterium which has cells with two distinct metabolic modes. The use of MiMoSA significantly improves our ability to predictively model metabolic changes and phenotype in more complex cell cultures.


Assuntos
Modelos Biológicos , Trichodesmium/citologia , Trichodesmium/metabolismo , Processos Autotróficos , Fixação de Nitrogênio , Reprodutibilidade dos Testes , Trichodesmium/crescimento & desenvolvimento
5.
Data Brief ; 19: 896-920, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29900389

RESUMO

This article contains data and summary statistics of solar irradiance and dry bulb temperature across the Hawaiian archipelago resolved on a monthly basis and spanning years 1998-2015. This data was derived in association with an article titled "Consequences of Neglecting the Interannual Variability of the Solar Resource: A Case Study of Photovoltaic Power Among the Hawaiian Islands" (Bryce et al., 2018 [7]). The solar irradiance data is presented in terms of Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI) and was obtained from the satellite-derived data contained in the National Solar Radiation Database (NSRDB). The temperature data is also obtained from this source. We have processed the NSRDB data and compiled these monthly resolved data sets, along with interannual summary statistics including the interannual coefficient of variability.

6.
Science ; 360(6396)2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29954954

RESUMO

Some energy services and industrial processes-such as long-distance freight transport, air travel, highly reliable electricity, and steel and cement manufacturing-are particularly difficult to provide without adding carbon dioxide (CO2) to the atmosphere. Rapidly growing demand for these services, combined with long lead times for technology development and long lifetimes of energy infrastructure, make decarbonization of these services both essential and urgent. We examine barriers and opportunities associated with these difficult-to-decarbonize services and processes, including possible technological solutions and research and development priorities. A range of existing technologies could meet future demands for these services and processes without net addition of CO2 to the atmosphere, but their use may depend on a combination of cost reductions via research and innovation, as well as coordinated deployment and integration of operations across currently discrete energy industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...